

24rd **National Award for** 2023 Excellence in Energy Management

Vasind Works

JSW Steel Coated Products Limited Vasind

Presenter : Mr. Shravan Kumar – Energy Manager Mr. Mahesh Sole- DGM Electrical

Presentation Coverage

- 1. Introduction, Energy Team, Org Structure of JSWSCPL
- 2. Energy Consumption in last three years
- 3. Information on competitors, National & Global Benchmarking
- 4. Energy Saving Project Implemented in last three years
- 5. Innovative Projects implemented
- 6. Utilisation of Renewable Energy sources
- 7. Utilization of waste
- 8. GHG Inventorization
- 9. Net ZERO commitment
- 10. EMS and other requirements
- 11. Digitization & Industry 4.0 for Steel Industry
- 12. Stake holder involvement in energy efficiency
- 13. Beyond Steel Any certification, Training, Awards

Introduction

SCPL 100% Subsidiary of JSW Steel. Steel

Vijayanagar – 13 MTPA Salem – 1.2 MTPA

Dolvi – 10 MTPA

JSWBPSL – 3.5 MTPA

JSWISPL – 1 MTPA

MAIN PRODUCTS

1. Galvanizing

- 2. Galvalume
- 3. Colour coated coil & sheets

4. CRCA

STEEL

- India's leading integrated steel producers
- Installed crude steel production capacity:~28 MTPA

CEMENT

- Manufacturer of Portland Slag Cement (PSC), Ordinary Portland Cement (OPC) and Ground Granulated Blast
- Furnace Slag (GGBS) Operational capacity of 14 MTPA

ENERGY

- Engaged across the value chain of power business
 Operational
- Operational capacity: 4.6 GW

FOUNDATION

- Social development arm of JSW group
- Footprint across 11 states and 15 districts reaching out to 1 million individuals

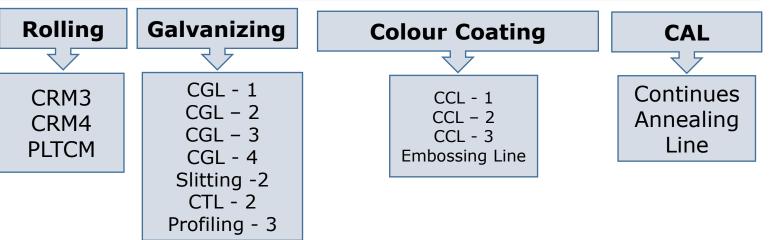
VENTURES

- Early-stage, techfocused, venture capital fund
- JSW Ventures' portfolio comprises of Indus OS, LimeTray, Purplle, Homelane and HealthPlix

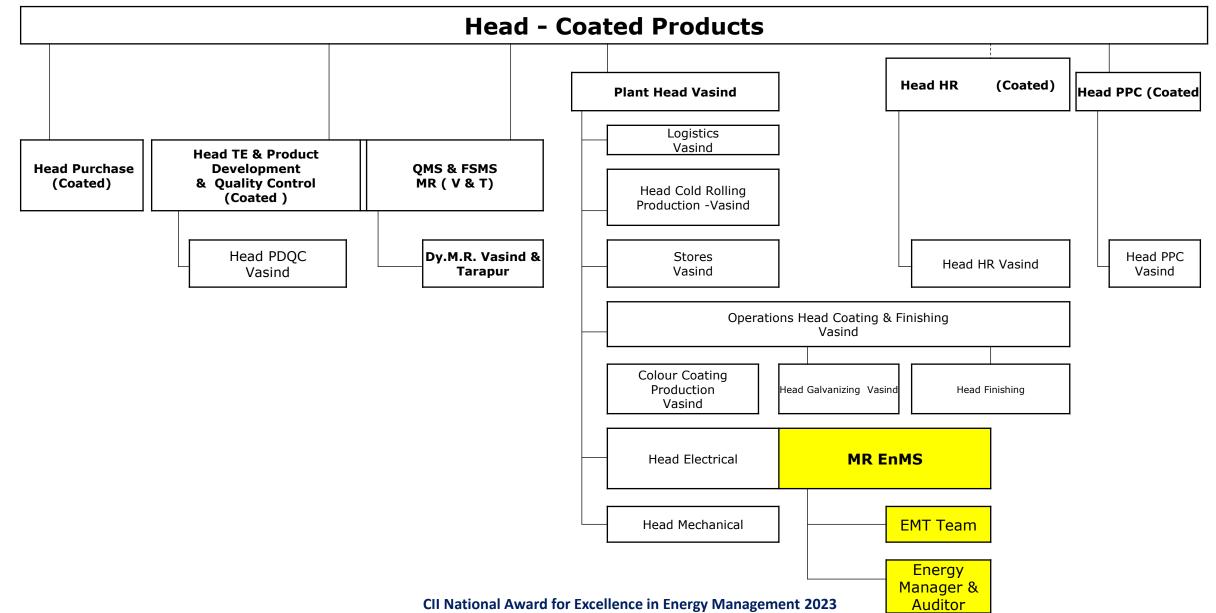
- Engaged in development and operations of ports
- Operational capacity 113 MTPA

PAINTS

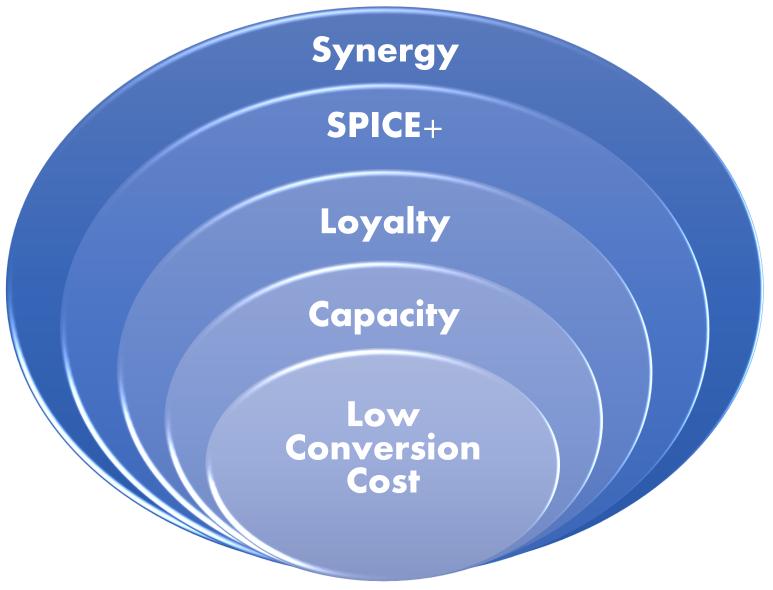
SW PAINTS


 Only fully-automated, water-based plant in India

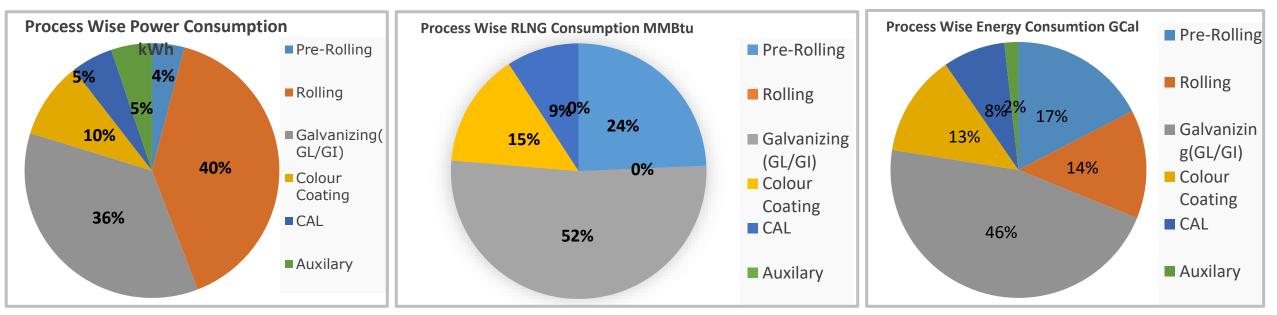
SPORTS


Vasind -2 MTPA

Organisation Chart & EMT

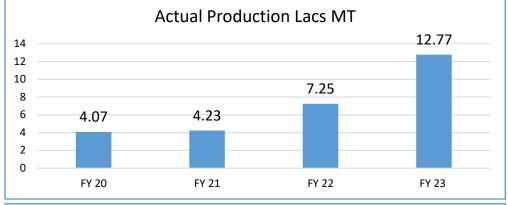


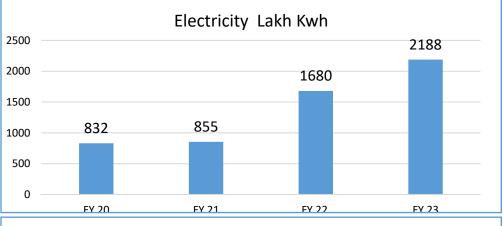
Unique Features



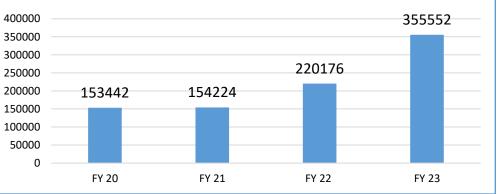
2. Energy Consumption Mapping

	1.5. References. The second mean effective of the second mean effective	f Indian Industry						
Distribution Energy Used %	Area	Power (Lac kWh)	Power (Gcal)	RLNG (Lac MMBtu)	RLNG (GCal)	Energy in Gcal	Energy S	ources
100330	Pre-Rolling	90	7740	3.48	87755	95436	RLNG (GAIL)	Electrical Power (OA)
188228,	Rolling	877	75379	0.00	0.00	75379		
355552, 35% 65%	Galvanizing (GL/GI)	779	66977	7.22	182161	248921	14.30 Lacs MMBtu/A	2188 Lac kWh/A
	Colour Coating	214	18370	2.07	52169	70534	355552 GCal/A	188228 GCal/A
	CAL	116	9993	1.32	33149	43131		
G Cal Elec RLNG G Cal	Auxilary	114	9770	0.00	0.00	9770	Total : 543	780 GCal
	Grand Total	2188	188228	14.09	355552	543780		


2. Specific Energy Consumption in last three years



Plant Energy Consumption									
Energy	Unit		FY 20	FY 21	FY 22	FY 23			
Electricity	Lakh Kwh		832	855	1680	2188			
Thermal	Million Kcal		153442	154224	220176	355552			
Specific Energy Consumption	MTOE/t		0.0399	0.04	0.041	0.0405			
	Plar	nt Capacity Utiliz	zation						
	Unit		FY 20	FY 21	FY 22	FY 23			
Installed Capacity	Lacs ton		4.5	4.5	13.5	20.29			
Actual Production	Lacs ton		4.07	4.23	7.25	12.77			
Capacity Utilization	%		90.4	94.0	58.6	68.7			
Sp	ecific Energy Con	sumption MTO	E/t						
0.0412			0.041						
0.041					0.	0405			
D.0406 D.0404									
0.0402 0.0399	0.	04							
D.0398 D.0396									
0.0394			_						
0.0392 FY 20 FY 21 FY 22 FY 23									


product mix - FY23-23 SEC till Aug-23 is 0.0415 MTOE/t

SVV

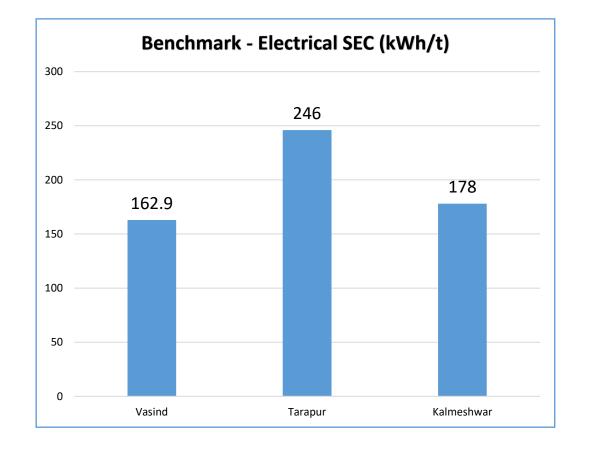
Thermal Million Kcal

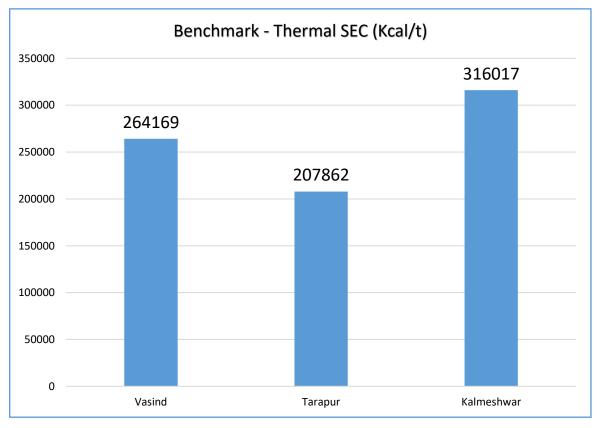
2. Specific Energy Consumption in last three years

Perform Achieve Trade (PAT) Cycle

PAT-1			PAT-2						
Energy	Consumption (N	(TOE/T)				Energy Consumption (MTOE/T)			
Notified	Notified Target	Achieved and Verified	Energy Saving MTOE	ESCerts Awarded	Notified	Notified Target	Achieved and Verified	Energy Saving MTOE	ESCerts Recommended
0.0594	0.0575	0.0545	2042.3	1875	0.044	0.0414	0.042	0	-294

Specific Energy Consumption MTOE/t




SEC Reduction in Last 10 Years 32.65%

CII National Award for Excellence in Energy Management 2023

3. Information on Competitors /National & Global Benchmark

ENCON Measures FY 21

ENCON Measures	Electrical Savings (kWh)	Thermal Savings (GCal)	Savings (Rs Million)	Investment (Rs Million)	Payback (Months)
Installation of VFD in Crane LT and CT to reduce power consumption	22000	0	0.15	0.30	23.99
Improve power factor from 0.965 to 0.999 by installing APFC	1200000	0	8.18	16.00	23.46
Installation of VFD at CCL1 RTO combustion blower	80000	0	0.55	0.00	0.00
CCL-1 , All steering / staggering unit pump motor off Auto after line stopped due to any reason.	20461	0	0.14	0.00	0.00
CCL-2, All steering / staggering unit pump motor off Auto after line stopped due to any reason.	18105	0	0.12	0.00	0.00
CGL-1, All steering / staggering unit pump motor off in Auto after line stopped for more than 15 Min.	30769	0	0.21	0.00	0.00
CCL Pump house connect with New pump of CGL-1 and CCL pump house stop. Combined use of New cooling tower pump for CGL-1 and CCL	47538	0	0.32	0.00	0.00
CCL-2 RTO is to be made off during sample testing and idle hrs	363000	0	2.48	0.50	2.42
Recoiler Staggering 1&2 Pump Motor On/off in auto according to recoiler selection.	0	1250	3.60	0.00	0.00
Total	1781873	1250	15.75	16.80	11.3
With implementation of above measures we have	e saved 2700 C	cal of total or	orav & m	itinated	

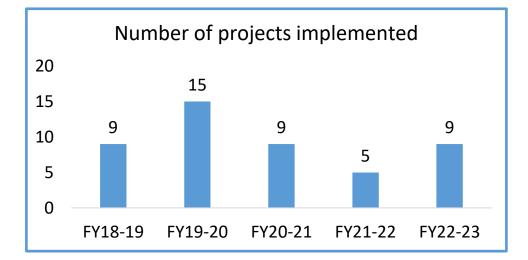
With implementation of above measures we have saved 2790 Gcal of total energy & mitigated 1737 tCO₂ in FY:21

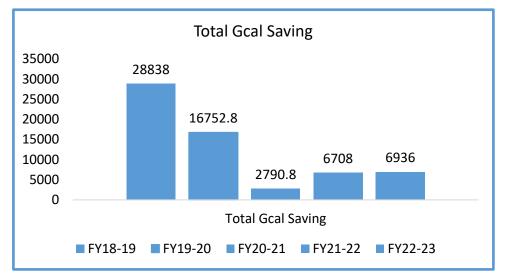
1511

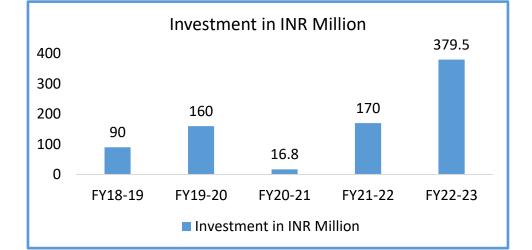
ENCON Measures FY 22

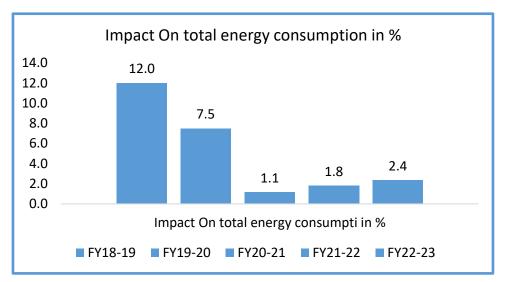
SV

	Electrical Savings	Thermal	Savings	Investment	Payback
ENCON Measures	(kWh)	Savings (GCal)	(Rs Million)	(Rs Million)	(Months)
Installation of 1.3 million ton PLTCM with advance energy efficient technology	5000000	0	40.5	100	29.6
Fixed power optimization by speed increased from 65 to 100 mpm	1875000	0	15.2	70	55.3
CGL-1, Br5 M1 and Recoiler Motor cooling blowers replaced with low power high efficiency blowers.	25538	0	0.2	0.2	11.6
Reduction in Compressor Power by 1700 kWh/Day. A. Installation of Flow meter in air lines B. Leakage arrest at all unit. C. effective loading /unloading setting.	561000	0	4.5	0.7	1.8
Installation of pyrometer and close loop control of Induction oven and blower	340000	0	2.9	0.5	2.1
Total	7801538	0	63.33	171.40	4.4


With implementation of above measures we have saved 6708 Gcal of total energy & mitigated 6319 tCO₂ in FY:22


ENCON Measures FY 23




		Pote						
Objectives (FY-23)	kWh/A	RLNG (MMBtu/A)	G Cal/A	Rs Lac/A	Investment Required Rs Lac			
Rectify the steam traps and increase the condensate recovery (2% Reduction in RLNG)	0	4080	1028	84	50			
Install ControlAiR Intelligent Flow Control (IFC) System for air compressors (10% Red in Compressor Power)	620500	0	534	43	100			
Replacement of Old inefficient motors with IE3/4 Motors (4% Red)	79200	0	68	6	20			
Replacement of CT/LT of 5 nos. Old cranes slip ring control with VFD (20 Units/Day)	36500	0	31	3	25			
CGL-2 CAG D1 blower replaced with high efficiency blower	323000	0	278	23	15			
CRM-3 Fume Exhaust blower replaced with high efficiency motor	269000	0	231	19	15			
CRM3-Conversion of DC to AC motors and speed increased from 450 to 1400 mpm to optimize power & increase productivity.	1250000	0	1075	88	6000			
HBR and Calm section heater auto control	253440	0	218	25	10			
DC to AC drive conversion system at RW 4	6558	0	6	0	60			
Total	6870198	4080	6936	572	3795			
With implementation of above measures we have saved 6936 Gcal of total energy & mitigated 5806 tCO ₂ in FY:23								

Continual Improvement

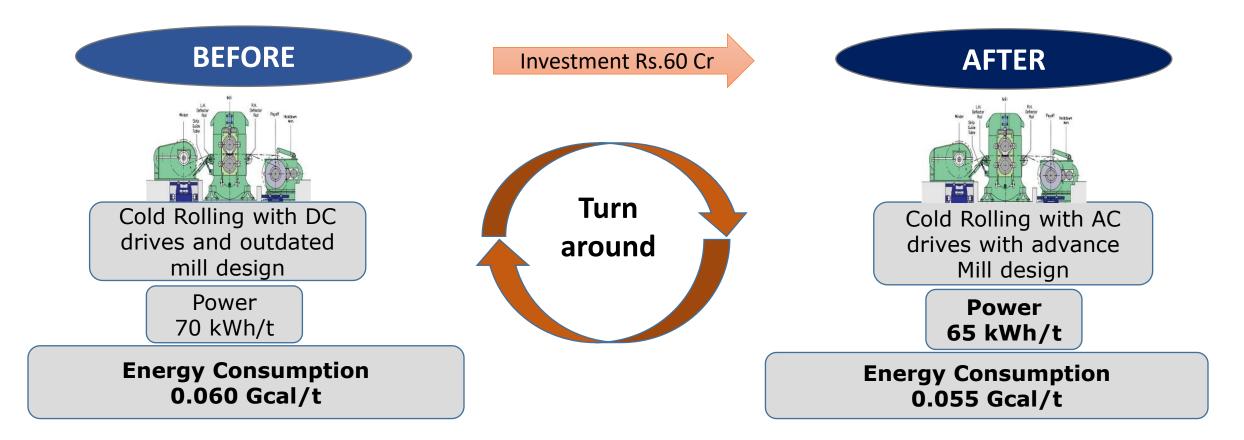
With implementation of energy saving measures, total energy saving of 16434 Gcal achieved and 13862 tCo2 mitigated in last three years

			Confederation of indian industry								
1) En) Energy Efficiency measures										
		Energy Efficiency measures planned for FY:20)23-24								
Sr. No.	Equipments	Objectives	Target								
1	All Line	Procure various energy consuming equipment on the basis of Life Cycle Cost criteria mentioned in PR	100% compliance								
2	CGL-2	Installation of Inverted U type furnace at CGL 2	10% reduction in RLNG consumption								
3	Plant level	Focus on Carbon Neutrality Road Map – with Timelines and % Reduction of FY30 baseline.	Carbon Neutral by FY 30								
4	CCL	Rectify the steam traps and increase the condensate recovery (CCL and Pickling)	2% reduction in Boiler RLNG Consumption								
5	PKL	Rectify the steam traps and increase the condensate recovery (CCL and Pickling)	2% reduction in Boiler RLNG Consumption								
6	Plant level	Replacement of Old inefficient motors 20 nos total 388 KW with IE3/4 Motors (CGL1/CGL2/CRM4)	4% Reduction in Power consumption								
7	Plant level	Replacement of CT/LT of 3 nos Old cranes slipring control with VFD (CGL1 202 and 201/ CRM4 301)	20 Units/Day/Crane								
8	CCL2	Installation of New RTO	20% reduction in RLNG Consumption								
9	CGL2	Installation of VFD for Emergency CGL2 N2 Booster compressors	20% reduction in power consumption from 7.5kw to 6kw								

Energy Efficiency measures

Confederation of Indian Industry

		Energy Efficiency measures planned for FY:2023-2	24
Sr. No.	Equipments	Objectives	Target
10	CCL-1,2	CCL 1 and 2 Degreasing pumps stop in auto with line stop.	5% Reduction in Power consumption from 95 Kw to 90 Kw
11	CGL1/CCL1&2	Common water pump for CGL1 and CCL 1 & 2 by installing VFD	300 Units/Day
12		CCL1, CAL steam trap and condensate recovery with PPPL pumps	4000 units/A and 500 MMBtu/A
13		Replacement of V belt at CCL with cogged belt Total 1152 Kw load 3% saving	302735 Unit/A
14		Low efficiency M4 Elgi compressor replaced with high efficiency copmressor (M4 0.201 Unit/CFM and M3 0.216 Unit/CFM)	2500 Units/Day
15	PLTCM	PLTCM condensate recovery by PPPU pumps	36960 Unit/A and 4588 MMBtu/A RLNG
16	Plant level	Installation of roof top solar panels in Opex model at Vasind	4032000 Unit/A


With implementation of above measures, total I energy Saving is expected to be 11138 GCal

5. Innovative Project Implemented

Innovative project-1. CRM3 revamping – Inverter Technology upgradation

Energy Saving-1250 Gcal/A @ 0.25 Million Ton Production

5. Innovative Project Implemented

Innovative project-1. CRM3 revamping – Inverter Technology upgradation

Uniqueness of Project

DC to AC Motors

Speed enhancement 450 to 1400 mpm

Increase in Productivity

LV VFD drives & advance Level –II automation

Modification with latest design

Use of Energy Efficient AC motors

Energy Saving

Energy Saving-1250 Gcal/A @ 0.25 Million Ton Production

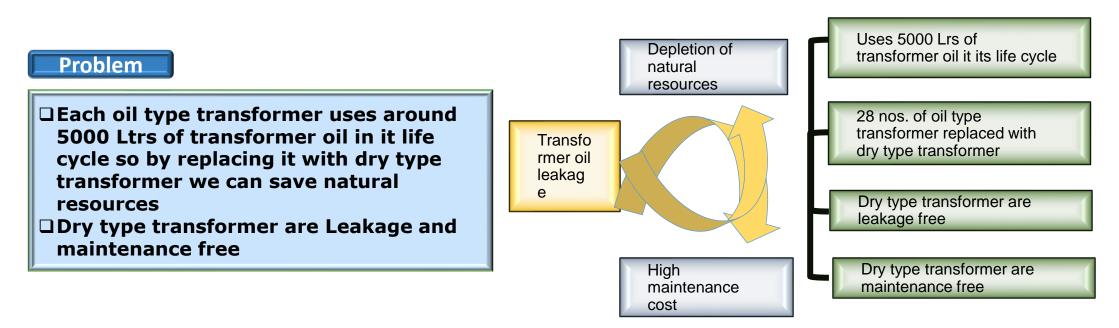
Innovative project-2. : Use of Hydrogen in place of Ammonia - reduction in Ammonia Cracker power consumption

- To crack ammonia we have heat it to 850 Deg.C for which we had two heaters of 90 KW each
- □ Use of cracked Ammonia leads to impurity in quality of coated product hence decided to use pure Hydrogen. This is used as reducing agent inside in the galvanizing furnace. Heater KW-90*2

Heater Capacity(KW)	Run Hrs.	Power Consumption(Kwh)
180	8640	1555200

Results Achieved:

- □ Yield improvement by 1 %
- □ Reduction in overall plant Ammonia by 20 %
- □ Increased productivity by 5 %
- □ Ammonia Cracker power consumption eliminated

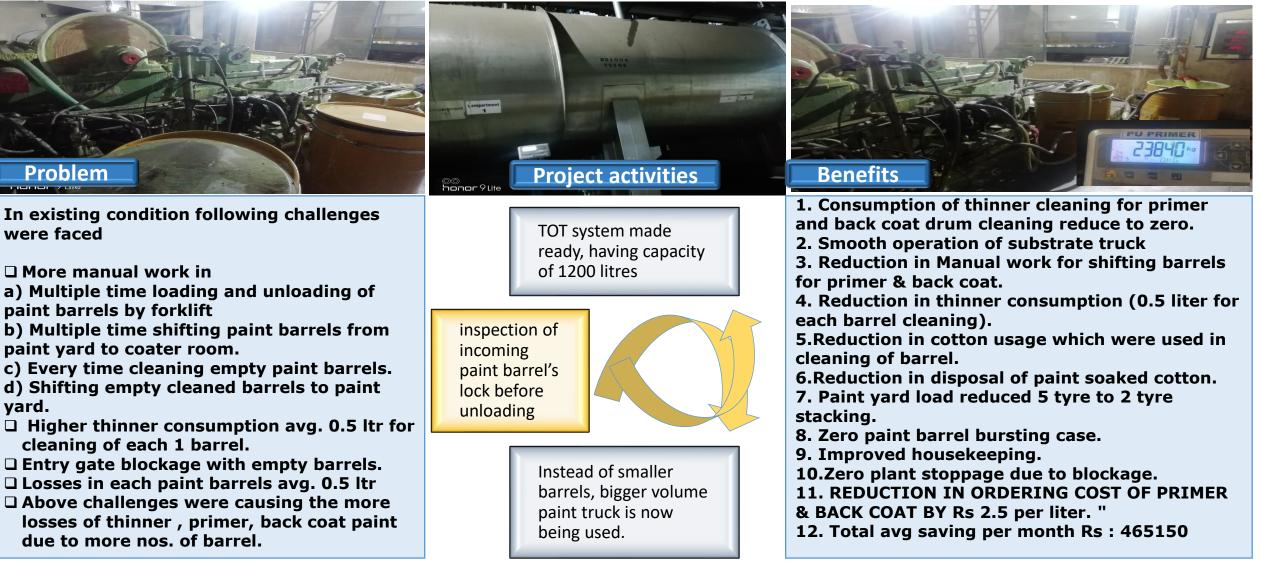

Implementation of this project resulted in energy savings of 1337.472 Gcal/Annum
 Horizontal deployment of the project is planed on other CGL Lines

5.Innovative Projects Implemented

Innovative Project-3 :- Resources optimization :Use of dry type transformer in place of Oil type transformer reduction in use of mineral oil

Benefits

With the installation of 28 dry type transformer, 140000 Ltrs of transformer oil in transformer


life cycle

Leakage and maintenance free transformer"

5.Innovative Projects Implemented (Project-3)

Innovative Project-4 :- Reduction in losses of thinner, primer & back coat at CCL line through use of bulker system for back coat paint and primer procurement.

6. Utilization of renewable Energy Sources

Renewable Energy generation

Rain Water

Installation of Root Top Solar Panels JVM School and cafeteria

Total power Solar Solar Power used Million **Financial** Technology Type of Onsite/ % Used System Offsite (Electrical) (kWh) Energy year (kWp) kWh FY 20 PV Solar Onsite 5.5 93294 80 0.11 FY 21 Solar 5.5 92294 85.5 0.11 PV Onsite FY 22 Solar Onsite 5.5 90294 186.2 0.05 PV FY 23 5.5 PV Solar Onsite 90294 188.2 0.05

	THE	RPO T	O TARGET REC PURCHASED			
FY	Total Power (MU)	SOLAR	NON SOLAR	SOLAR	NON SOLAR	Value Rs Lac
FY 20	78.6	2751	9969	2751	9969	228
FY 21	87.3	874	7863	0	0	0
FY 22	161.728	2021	15364	0	0	0
FY 23	188.228	2021	19327	0	0	0
TOTAL	489.356	7667	48560	2751	9969	228

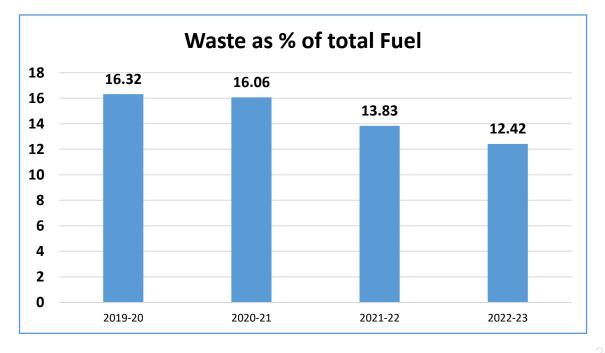
Use of Transparent Sheet for natural

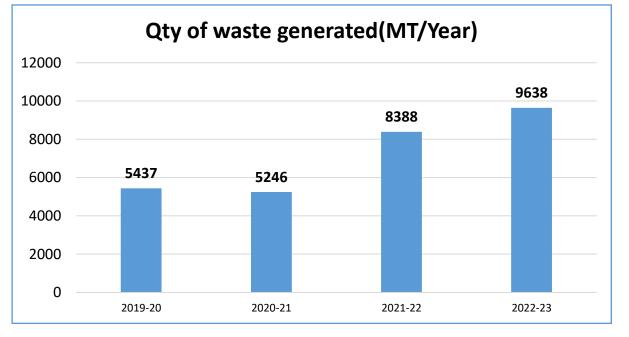
light	ing in plant	ECO - VENTILATOR	Harvesting		
sed	Actual FY : 21-22	Target FY-23	cumulative FY: 22-23		
.1)5	Specific Water Consumption	Specific Water Consumption	Specific Water Consumption		
)5 Rs	M3/MT	M3/MT	M3/MT		
c 8	0.26	0.37	0.23		

Use of

ECO -

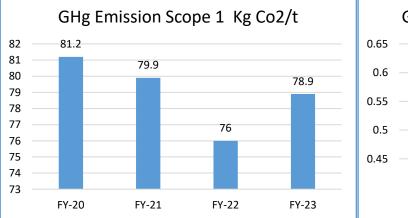
Installed ZLD unit of 1500 KLD and achieved 45% reduction in fresh water consumption

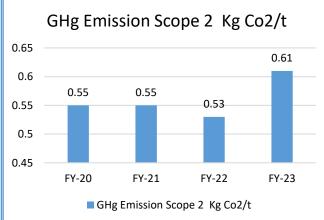

nagement 2023



7. Waste Utilization and Management

S. No.	Year	Waste Details	Quantity	GCV kCal	Heat Value M kCal	Waste as percentage of total fuel
1	2019-20	Paint VOC	5246	7000	36722	16.32
2	2020-21	Paint VOC	5409	7000	37863	16.06
3	2021-22	Paint VOC	8388	7000	58720	13.83
3	2022-23	Paint VOC	9638	7000	67466	12.42




*VOC- Volatile organic compound

8. GHG Inventorization

Sr No	Detail of Area	Detail of Area Green Zone				al es	Shrub s	Lawn Sq Mtr		
1	Factory inside		4067	6	180	00	8500	25800		
2	R.C Farm House, House	Guest	9147	'5	250	00	8000	85000		
3	SVTC, Other ope	4200	0	35	350		1500			
4	Colony 1,2,3	2186	6	650		1500	21866			
			1960	17 530		00	18100	134166		
	As on Date> 8568		120250				Calculation based on			
Iotal	Total Tree planted -→ 1			128358			Carbonify.com			
CO2	t / year Offset		25671.6				5 trees for 1 ton of CO2 /year			

Confederation of Indian Industry
Sustainability and GHG CO2 emissions

Target to reduce the CO2 Emission by 3% in FY-24 and to become Carbon neutral plant by Fy-30, by adopting following initiatives-

- 1. Conversion of DC to AC for both the Old Cold rolling Mills- FY-23(CRM-3 revamping completed)
- 2. Installation of 35 MWp Solar power plant by JSW Energy for coated business-FY-25
- 3. Use of Hydrogen in Furnace
- 4. Replacement of all the old AC motors with IE-3 Motors- FY-26(more than 70% motors are IE3/4)
- 5. Plantation of 50000 trees till FY-30 every year 5000

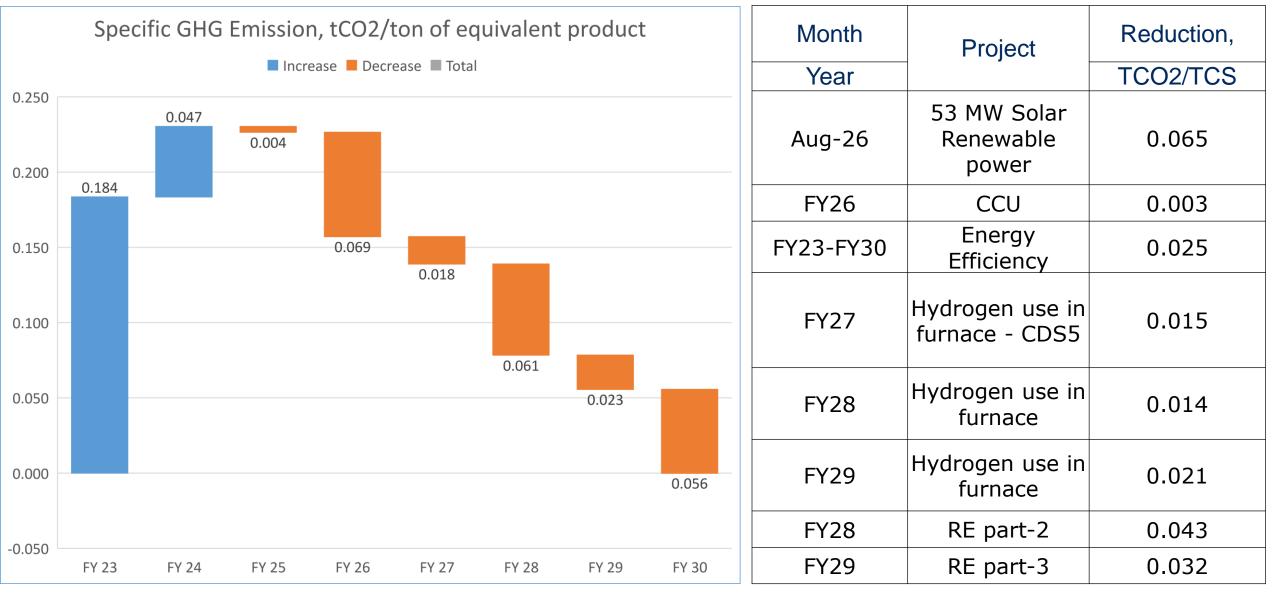
Reasons for increase in GHG emission

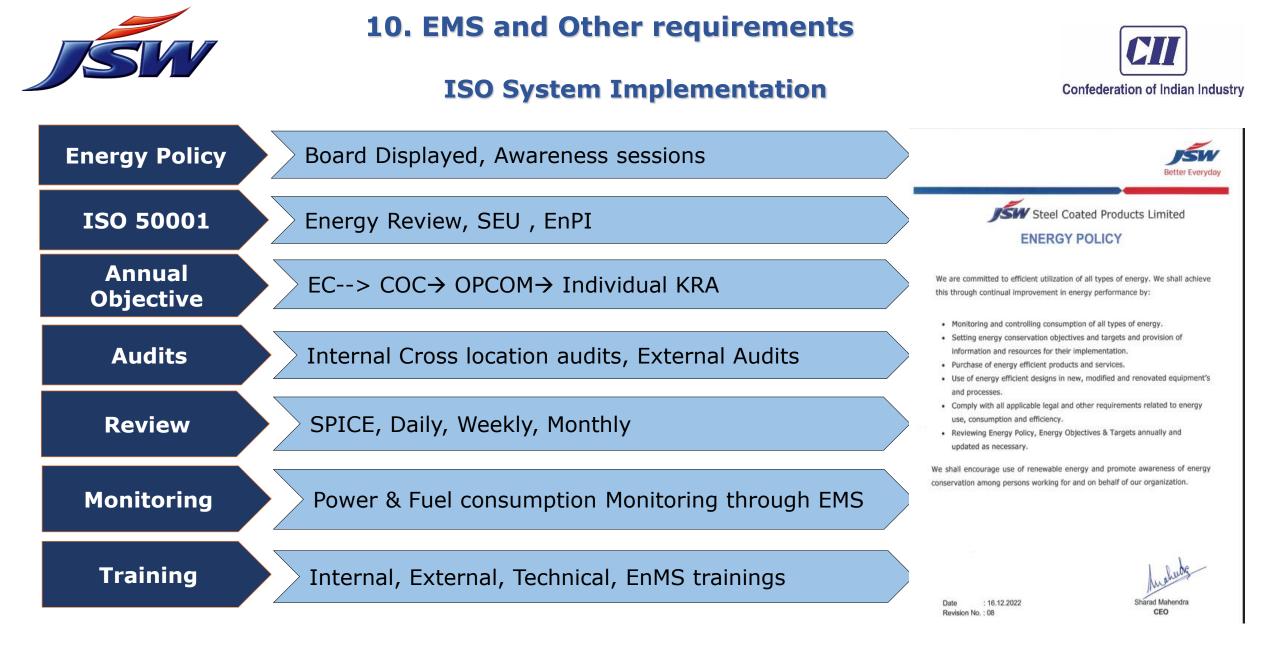
1. Trial runs of newly commissioned lines CGL-3,4 , CCL-3, CAL $\,$

Addition of new process lines (CGL-3,4 , CCL-3, CAL) FY
 Increase of CRCA,PPGL and Galvalume which has high SEC

We report GHG data to JSW group's headquarters every year

9. Roadmap towards Net-Zero emissions – Carbon Neutralit


Confederation of Indian Industry


Parameter	Unit	VASIND	Reduction in 10% Energy Consumption	Replacement of 59% Electrical Power by Renewable Energy	Reduction in 1 % GHG emission using CCU	Poduction in 20 %	Reduction in 1 % GHG emission using Carbon offset	
CO2	tCO2	529,954	-54,464	-311,077	-5,723	-154,750	-4,143	0
Emission	%	100	10	59	1	29	1	0
Energy Efficien 54,464	tCO2	-	Carbor vable Captur y - 59% 5,723 t 77 tCO2	154,750 tCO e(CCU)- 1 %		Target - 2030	ACHIEVE CAN NEUTRAL	

9.Roadmap towards Net-Zero emissions – Carbon Neutrality

Confederation of Indian Industry

10. EMS and Other requirements

Energy Review

Rev- XXX Rev Date...xxxxxx

Identification of SEU's For-Fy 23-24 Location - Vasind Process - All

DCN Plant Code -Department Code-Process Name-Serial No.

								Co	nsumpt	ion /Ye	ar	Consum	Therr nption/		n Gcal	Total	Cons	umptior	n in %	Potenti	ual Sav al of Ei sumpti	nergy		ll Saving gy Consu		Legal	Тор	Significa nt	
Sr. No.	Process / Equipme nt	Product ion (t)	Power	RLNG	FO	Steam	RLNG	FO	Stea m	Total	Energ V	% of Total Power	% of Total Therm al	lotal	Electric al Energy	Ther mal Energ y	Total Ener gy	Electric al Energy	Thermal Energy	Total Energy	requirem ent	Manageme nt guidelines	Energy	Selection Criteria (Select 1,2 or 3, 4 as given below)					
					KWh	MMBtu	t	Kg	Gcal	Gcal	Gcal	Gcal	GCal	%	%	%	Lakh kWh	GCal	GCal	%	%	%	Y/N	Y/N	Y/N	_ Delow)			
	Total			•							0			-				#DIV/0!	#DIV/0!	#DIV/0!									

Criteria -1 : More than 8 % of total power or total thermal or total energy used to be considered as Significant. (Applicable for Vasind) Criteria -2 : 2% Annual Saving of Energy Consumption. Criteria 3 - Legal requirements other than PAT & RPO Criteria -4 : Top management guidelines.

Methodology for deciding the SEU's priority								
Name of SEU	Annual Saving Potential of Energy Consum ption	Invest ment Requir ed	Requir ed Down Time	Annual Saving Potential of Energy Consumptio n (Gcal)	Invest ment requir ed	ed	Score	Priority (P1P2 etc.,)
	GCal	Rs in Lacs	Days	A	в	с	АХВХС	*
							0	P1
							0	P2
							0	P3
							0	P4
							0	P5
							0	P6
							0	P7

* " = Priority of SEU to be decided based on above methodology in descending order of score . Eg. P1 top priority and so on...

A) /	Annual Saving	B) Inve	estment required (Rs.	C) Required dow		Required down time
5	More than 1000	5	Less than 10 lacs		5	Less than One day
4	More than 500	4	More than 10 lacs		4	Less than three days
з	More than 250	3	More than 15 lacs		З	Less than five days
2	More than 100	2	More than 25 lacs		2	Less than seven days
1	Less than 100	1	More than 50 lacs		1	More than seven days
0	Not Identified	0	Not Identified		0	Not Identified

Prepared and Verified

EMT

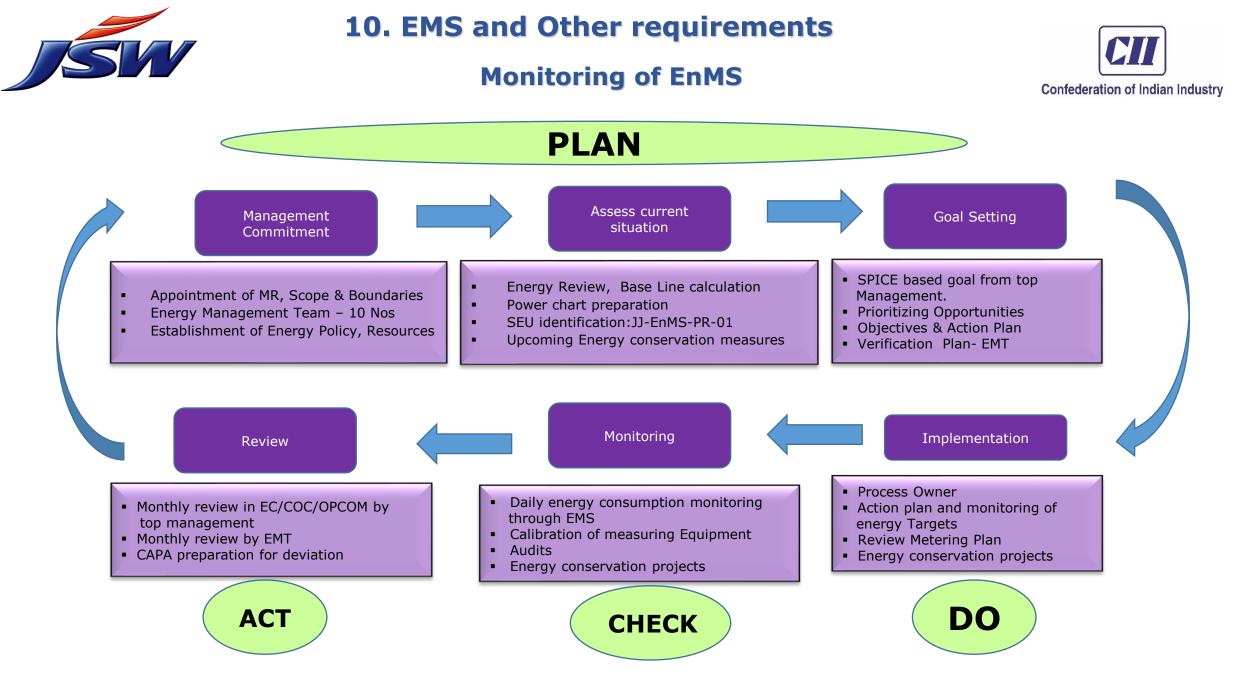
Distribution through E-mail to concerned HOD's

Methodology for deciding the SEU on % Annual Saving Potential of Energy Consumption

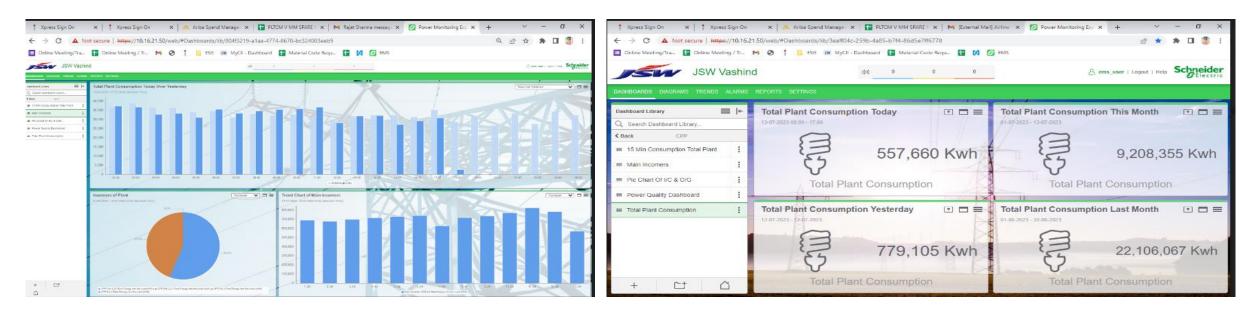
% Annual Saving Potential of Energy Consumption in Electrical Energy or Thermal Energy or Total Energy in respective process

> APPROVED BY HOD

DCN : JJ-EnMS-PR-01, Rev.1, Effective from 1st Oct,2021


10. EMS and Other requirements

ISO System Implementation

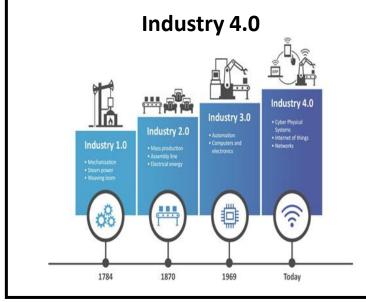




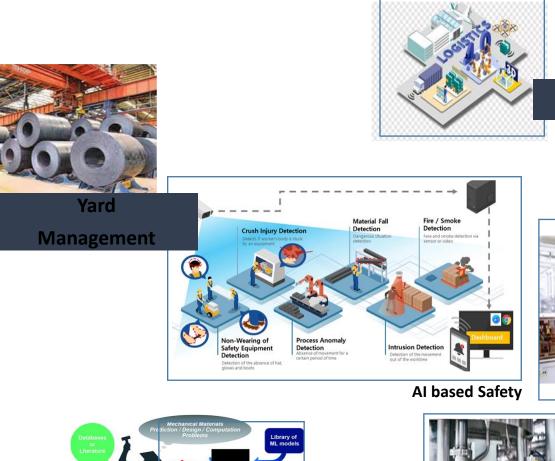
10. EMS and Other requirements

Energy Monitoring System

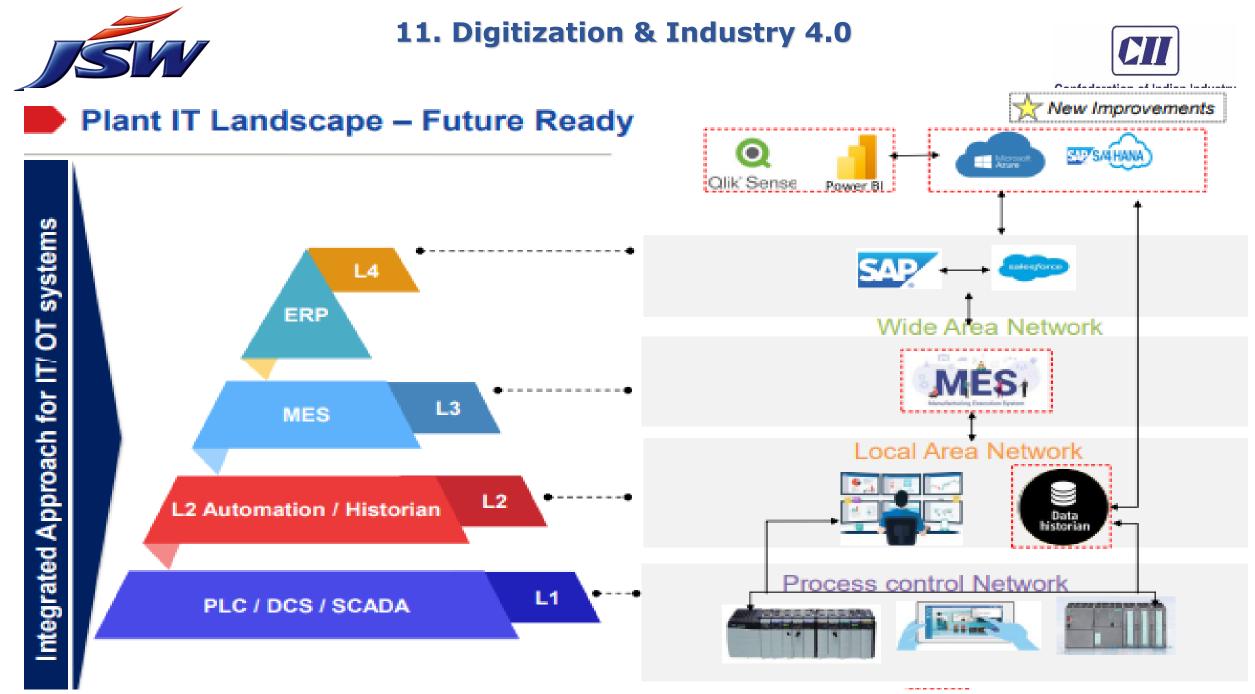
11. Digitization & Industry 4.0


CURRENT STATE

xperime or


Al based calculation of mechanical properties

Logistics



Predictive Maintenance

Robotics

11. Digitization & Industry 4.0

		Digitalization Road Map 2023	3 - 2027: VASIND	Confederation of In	dian Induator
	2023	2024	2025	2026	2027
		IOT based Predictive Maintenance			
		Compressed Air Optimisation			
Manufactu ring		Robotics - Dross removal & Sleeve loading			
8		Process optimisation using Big Data/ AI ML (I Platform for Data Visualization			
		Roll Shop Managem	ent		
РРС	MES				
		ICT - Dash board	l		
Logistics		YMS Logistics Sampark project - (Inboud/ 0			
8		Entry			
-		Inventory - digital monitoring a			
Finance			Costing Automation		
		EC Dashboard	Profitability Analysis Dashboard		
		AI enable Safety & Security -	Shark Project		
Safety			Visitor and Employee - Gate Management		
Quality		Surface inspection system (SIS) - CAL & CCL 2			
			Contractor Management	system	
HR			Online Skill and Competency M	apping system	
		Training and employee ma	nagement		

12. Stake Holder Involvement

Stake Holders	Initiatives
Employee	Energy Awareness, Paper less Invoicing, e-NFA,
Customer	Awareness, product catalogue, CCMS Customer Audit , Desk top Audit , Google meetings
Supplier	ARIBA, EnMS –ISO 50001, Energy Efficient procurment
Society	Awareness – Skit, Training

	LED CONVERSION - CSR							
Impac t	Quantity	Power Consumpti on	Saving					
BEFOR E	Total HPSV Lights Installed 1800 Nos.	173 kW	Power Saving 4.54 Lacs kWh /					
AFTER	Installed LED Lights 958 Nos.	84 kW	Annum Potential saving Rs.26.37 Lacs/Annum					

12. Stake Holder Involvement – Society & Supplier

Dec, 2020 (Zoom call – 7 contractor) Dec, 2022 (Approx 50 major vendors

12. Stake Holder Involvement – Employee

Energy awareness

Energy week Celebration

Energy week Celebration

Energy Conservation Skit

Energy Exhibition Recognition

Energy Quiz

13. Beyond Steel : Awards & Certification

Confederation of Indian Industry

FY	Name of Award	Location	year	Awarded by
FY24	Jamnanlal Bajaj for Fair Business Practices highest recognition as "TROPHY" for Coated	VTK	May, 2023	CFBP
FY23	Vasind Team secured Third Position in 17th State Level Energy Conservation and Management Award (MEDA) in the category of Metal and Steel Sector.	Vasind	Dec'22	MEDA
FY23	2 Teams won "Par Excellence", 2 Excellence, in National Convention On Quality Concepts (NCQC - 2022) held at Aurangabad. There were about 2200 Teams from all over India.	Vasind	Dec'22	QCFI
FY23	23rd National Energy Award for Excellence in Energy Efficient 2022- Vasind has been recognized as "Excellent Energy Efficient Unit"	Vasind	Sept, 2022	CII, Hyderabad
FY23	Gold Medal in India Green Manufacturing Challenge 2021-22 & 1st Runner Up IGMC Apex Award.	Vasind	April, 2022	IRIM , Chennai
FY23	Platinum Award - Apex India Green Leaf Award 2021 for Energy Efficiency	Vasind	April, 2022	Apex India Foundation, Delhi

13. Beyond Steel : Any other relevant information

OTHER QUALITY AWARDS	Received				
Received 2 nd Runner-up award for CII National Energy Efficiency Circle Competition 2023	July-23				
Received "Gold" position for SEEMs National Energy management 2022	Sept-23				
Received "Best Supplier" award for 2019 from M/s Haier Appliances, Pune	Jan_2020				
Samsung has awarded JSWSCPL for Excellence in recognition of "Best Support" for Quantity Supplied during 2019	Dec'19				
SWSCPL, Kalmeshwar unit has Participated in 33rd National Convention on Quality Concepts (NCQC-2019) in December 2019 held at (IIT BHU) Varanasi Dec-3 Total 8 Teams participated)					
JSWSCPL, Vasind unit has Participated in 33rd National Convention on Quality Concepts (NCQC-2019) in December 2019 held at (IIT BHU) Varanasi (Total Two Teams participated)	Dec-19				
JSWSCPL, Kalmeshwar unit has participated in Chapter Convention on Quality Concept (CCQC) -2019 Cojmpetition at Nagpur. Won Two Teams Super Gold, Four Team Gold & Two Silver Medal & 3rd Prize in Propagation award	Oct'19				
JSWSCPL, Vasind unit has participated in Chapter Convention on Quality Concept	Con 10				

Customer Appreciation

OL

G

Star	Contribut
Perform	ion
er	Partner
HAIER	SAMSUN

Best

G

K3 Certificate for GL, PPGI , PPGL Validity – Nov 2021

Best Vendor Award IFB

What we Earn is not important, but what we Save is most important...

Conserve Energy ..!!!! Save Earth....!!!

Thank you